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Nuclear chart showing the most proton-
rich and neutron-rirh isotopes from

He to Ar.
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+ R-Matrix method, E.Wigner etal., PR 72, 29 (1947).
+ K-Matrix method, J.Humblet etal., PRC 44, 2530 (1991).
+ The phase-shift method, J.R.Taylor, Scattering Theory: The
Quantum Theory on Nonrelativistic Collisions (Wiley, New York,
1972).
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103 (1984).
+ J-Matrix method, H.A.Yamani etal., J.Math.Phys.16, 410
(1975); A.M.Shirokov, etal., PRC79, 014610 (2009).
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024301 (2005); Z.P.Li etal., PRC 81, 034311 (2010): €




+

+

.

Jost function method
B.N.Lu, E.G.Zhao, and S.G.Zhou, PRL 109, 072501 (2012);
B.N.Lu, E.G.Zhao, and S.G.Zhou, PRC 88, 024323 (2013).

Real stabilization method (RSM)

A.U.Hazi and H.S.Taylor, PRA 1, 1109 (1970);
Y.K.Ho, Phys. Rept. 99, 1 (1983).

=—> RMF-RSM

L. Zhang, S.G. Zhou etal., PRC 77, 014312(2008).

Analytic continuation in the coupling constant (ACCC)

V.I.Kukulin etal., Theory of Resonances: Principles and Applications
(Kluwer Academic, Dordrecht, 1989).

—> RMF-ACCC
S.C.Yang, J.Meng, S.G.Zhou, CPL 18, 196 (2001).
S.S.Zhang, J.Meng, S.G.Zhou etal., PRC 70, 034308 (2004).
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Few-body model+CSM
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4+ N. Michel, etal., Gamow Shell Model
Description of Neutron-Rich Nuclet,
PRL89, 042502 (2002).

+ G. Hagen,etal., Gamow shell model
description of weakly bound nuclei and
unbound nuclear states, PRC 73, 064307
(2006).

+ J. Rotureau, etal., PRL97, 110603 (2006).

4+ J.G.Li, N.Michel, B.S.Hu, W.Zuo, and
F.R.Xu, Ab initio no-core Gamow shell-
model calculations of multineutron
systems, PRC 100, 054313 (2019)
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Shell model+CSM => Gamow Shell Model

Lecture Notes in Physics

Nicolas Michel
Marek Ptoszajczak

Gamow

Shell
Model

The Unified Theory of Nuclear
Structure and Reactions

@ Springer

N. Michel, etal., Gamow
Shell Model, Springer _4
International Publishifig"
AG 2021.
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 Abinito Nuclear Landscape
Navratil, Vary, Barrett Phys. Rev. Lett. 84 (2000) 5728 Ab initio
Bogner, Furnstahl, Schwenk Configuration Interaction

Prog. Part. Nucl. Phys. 65 (2010) 94 Den Sty EuncionaliTheory

 Shell model

Caurier, Martinez-Pinedo, Nowacki, Poves, Zuker, stable nuclei
Rev. Mod. Phys. 77 (2005) 427

Otsuka, Honma, Mizusaki, Shimizu, Utsuno,
Prog. Part. Nucl. Phys.47(2001)319

Brown, Prog. Part. Nucl. Phys. 47 (2001) 517

known nuclel

« Density functional theory
Jones and Gunnarsson,
Rev. Mod. Phys., 61 (1989) 689
Bender, Heenen, Reinhard,
Rev. Mod. Phys., 75 (2003) 121

Ring, Prog. Part. Nucl. Phys.37(1996)193 &;;;,z@ﬂ;eﬁﬁg Hj*zgj:ﬁﬁﬁﬁ
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S.G.Zhou etal., PRC 68, 034323 (2003)
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Relativistic Density
Functional for
Nuclear Structure,
International Review
of Nuclear Physics
Vol 10 (World
Scientific, 2016)




Improvements to conventional DFT - "*
IBINEFHE =k elHE ]
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)Py 0,65 ) %o (0

Pijm (0, @, 5) = [ x1,2(5) @ Yi(6, ¢)]jm

Nmax Nmax

fi(r) = Zf(‘)an,(r bo). &) = ng‘)Rm (r. bo)

R, b —b‘” Ru(®) = b5 112 )5

‘¢ [ ger § = 1/bg

M.V. Stoitsov etal., Comput. Phys.
¢ ] e—ar Comm. 167 (2005) 43;

M.V. Stoitsov etal., Comput. Phys.
Comm. 184 (2013) 1592

S.G. Zhou, J. Meng, P. RingAS

I’) y r< R‘ E.G. Zhao, Phys. Rev. C 82,
011301 (2010)

|




Attempts to develop a unified DFT

+ RMF-S, Sandulescu, Geng, et al., PRC68,
054323 (2003);

+ RMF-ACCC, Zhang, Meng, et al., PRC70,
034308 (2004);

+ RMF-RSM, Zhang, Zhou, et al., PRC77,
014312 (2008);

+ RMFE-CSM, Guo, Fang, et al., PRC82,
034318 (2010);

+ RMF-GF, Sun, Zhang, et al., PRC90, 054321
(2014);

+ RMF-CGF, Shi, Guo, et al., PRC92, 054313
(2015);

»| + RMF-CMR, Li, Guo, et al., PRL117, 062502

(2016).
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(open problems).




‘0 Theoretical framework

Gamow state

For an open quantum system, there are bound, resonant, and scattering states.

The corresponding wavefunctions can be written as

w(tn T‘) — wt(t)wr(r)

The wavefunction evolves according to the time-dependent Schrodinger
equation

0
@ﬁa\w = H|)
1B

o(t,r) = exp( ) 6(0,7)

When the energy E is real, the exponential factor is just a phase and the
Wprobability of finding the particle at a given r is unchanged over time
(&

[ (t,m)|? = [¢(0,7)] “




However, if the energy is complex

I
E:EO—’&§

The probability of finding the particle decays exponentially with time

exp (—%t) exp (—%t) (0, 7)

The state is claimed as resonant state (Gamow state) with half-life

7iln2
T, = T

Ut = e exp( ) lw0.)f

h‘o’-here the parameter I' is called the width of the resonance.




The RMF-CSM formalism

Relativistic mean field theory (RMF) meson | Jm | T
Lagrangian density: T 0| 1
i} | B}
L = Gi{iy"du = My + 5000,0 = U (@) = galbhio c [07] 0
1 1, ) ® 1- 0
_ZQMVQ,uV +m (Ujuw,u - wainwiwu p 1— 1
15 7 >, =
~1 Ry + m 0B — gV T
| R T3
——F"F,, — el ]
relaeli il Vi Assumptions
The nonlinear potential of the S|gma meson:; _ _
5 o 3 A + Static state assumption,
U(0) = gm0 + 38207 + 1830 + Time reversal symmetry, no
The field tensors for the vector mesons currents, the spatial vector
and the photon are given as components vanish,
+ Charge conservation, only
QY = Jw' - 0", !
. 0y MU:V ) . the 3-components of the
R = P -0p =g, (P Xp"), ISovector survives,
F* = gHA” — 9" AF. + No sea approximation.



The classical variational principle gives the Dirac equation for the nucleons and
the Klein-Gordon equations for mesons and photon:

The Dirac equation for nucleons:

4

The corresponding density

ps (@) = T4 i)y (r)
v = YLyl ()
sS4 wl (@) T3y (r)
pp(@® = YLyl (r)

p3 (1)

11—

2T3 Wi (l‘)

The K-G equation for mesons and photon:

la-p+ V) +BM+SE)y;(r) =g (r)

The vector and scalar potentials

1 _
S A0 ()

V() = g, (1) +g,m3p5(r) +e

S = gso(r)

.f

“Ac (1) + 0,U (0)
(A +ml} @)

{—A + mz}po (r)
—AAY (1)

—8oPs (T)
guwpPy (I)

8pP3 (r)
epp ()

These coupled equations are solved iteratively
with the assumptions aforementioned.

Then, we can obtain physical quantities on the
properties of the nuclei.




Complex scaling method

The starting point of CSM is a coordiante
transformation

F—F'=gF =e°F
g€G (space dilation group), and @ is of
complex number.

Usually,® is adopted as a pure
Imaginary parameter i0 (0 is real)

The corresponding transformation
operator U(0) is defined as

[U (9)}//('—,») _ eNielzl/j(FeiS) =y, (F)
The transformed Hamiltonian
H,=U (9) HU‘l(H)
h‘l'he transformed equation of motion

The transformation was introduced
by Aguilar, Balslev, Combes and
Simon.

ABC theorem

Conditions:

» The strongly restrictive sufficient
conditions are given with
mathematical rigor in the
references above.

» loosely speaking they amount to
the requirement that all quantities
In the Schrodinger equation are
dilation analytic.

» This means that there exists a
finite region of 6 in which their
transforms obtained by the \Sf

Oy,

application of U( 9 ) are analytie

HaWe(r) — EQWQ (r) J.Aguilar and J.M.Combes, Commun.Math.Phys.22,269(1971);
E.Balslev and J.M.Combes, ibid.22,280(1971); B.Simon, ibid.27,1(1972)



Results: The solutions of Hy in complex energy plane

> Abound state eigenvalue of |ma§i- (E) scattering states (6=0)
H remains also an

eigenvalue of H > Real (E)

20
o
» Aresonance pole E . = E - resonance
I['/2 of the Green-operator of states

H is an eigenvalue of H continuum goln-t'
. elatl.

» The continuous part of the Stles
spectrum of H is rotated .
Relati.

down into the complex
energy plane by the angle
20 .

» The important point is that
the wavefunctions of

al. resonant states are square

BaaDle. Combined with RME, the RME-COM
formalism is established.

case




Neutron resonances In nuclei

agreements are found.

PHYSICAL REVIEW C 82, 034318 (2010)

Application of the complex scaling method in relativistic mean-field theory

Jian-You Guo, Xiang-Zheng Fang, Peng Jiao, Jing Wang, and Bao-Mei Yao
School of Physics and Material Science, Anhui University, Hefei 230039, People’s Republic of China
(Received 9 October 2009; revised manuscript received 18 July 2010: published 21 September 2010)

We develop the complex scaling method within the framework of the relativistic mean-field (RMF) model.
With the self-consistent nuclear potentials from the RMF model, the complex scaling method is used to study
single-particle resonant states in spherical nuclei. As examples, the energies and widths of low-lying neutron
resonant states in '*’Sn are obtained. The results are compared with those from the real stabilization method., the
scattering phase-shift method, and the analytic continuation in the coupling constant approach and satisfactory

vl; RMF-CSM RMF-RSM RMF-ACCC RMEF-S

! r E I E I E r
Vfs/n 0.67014 0.01982 0.674 0.030 0.685 0.023 0.688 0.032
Vii3 3.26583 0.00403 3.266 0.004 3.262 0.004 3.416 0.005
Vi 9.59732 1.21178 9.559 1.205 9.60 1.11 10.01 1.42
Vjis5/2 12.57745 0.99157 12.564 0.973 12.60 0.90 12.97 1.10
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Proton resonances in nuclel

PHYSICAL REVIEW C 89, 034307 (2014)

Probing single-proton resonances in nuclei by the complex-scaling method

Zhong-Lai Zhu, Zhong-Ming Niu,” Dong-Peng Li, Quan Liu, and Jian-You Guo'
School of Physics and Material Science, Anhui University, Hefei 230001, China
(Received 15 January 2014; revised manuscript received 24 February 2014; published 12 March 2014)

By con‘j I\ances are
probed fo RMF-CSM RMF-ACCC RME-S n number
for the Sn 'more, the
influence d 1/ ; E, I E, I E, I 132Sn, and

TP Itig) £ ) 6.207  0.048 622 0073 6210  0.043} range of

0200 M by, 7135 0003 7.13 0017 7.132  0.003f2
- 3ps, 7305 0911 732 0.82 7513 0.924 P
3pi, 7663 1222 7.69 113 8.085 1344
2fs, 7919 0283 797 030 7.934  0.307




RMF-CSM for deformed nuclei

PHYSICAL REVIEW C 86, 054312 (2012)

Resonant states of deformed nuclei in the complex scaling method

Quan Liu, Jian-You Guo,” Zhong-Ming Niu, and Shou-Wan Chen
School of Physics and Material Science, Anhui University, Hefei 230039, People’s Republic of China )
(Received 29 August 2012; revised manuscript received 14 October 2012; published 26 November 2012)

PHYSICAL REVIEW C 90, 034319 (2014)

Relativistic extension of the complex scaling method for resonant states in deformed nuclei

Min Shi, Quan Liu, Zhong-Ming Niu, and Jian-You Guo"
School of Physics and Material Science, Anhui University, Hefei 230601, People’s Republic of China
(Received 3 August 2014; revised manuscript received 3 September 2014; published 24 September 2014)

The complex scaling method is extended to the relativistic framework for describing deformed nuclei and
the theoretical formalism is presented in detail. How to expose the resonant states is demonstrated, and the
‘ applicability and efficiency of the extended method are confirmed. The energies and widths of the single-particle

resonant states in nuclei with A = 31 are determined, and the structure of single-particle levels for bound and
resonant states is shown to be similar to that in the nonrelativistic calculations. Especially, the present formalism
has yielded richer numerical results for the resonant levels than those obtained by the coupled-channel method
in relativistic and nonrelativistic calculations.




The RMF-CGF formalism

Complex scaled Green's function (CGF) method  prcos 054313 (2015)

Shi, Guo, etal.,

To more conveniently determine the resonance states, including the corresponding
resonance parameters, we have developed a relativistic complex-scaled Green
function method.

I I ) ] L] I I ] ] ] ] I ]
7/2[303]

] ) ] _048 -_I I I ) I I J I
Complex scaled Green function is defined as F 503

1 050 |
GV(e,r,r") = (x| ") R
E — Hg [
where 052

= ]
Hy = UO)HU )", 2 os4 b b
S C resonant state ]
The level density of system is defined as o b b
1 1 - ° :
pule) ===t [ (el o) ew b e
. ) 4.55 4.56 4.57 4.58 4.59
By using the extended completeness relation: E [MeV]
‘ Nb N, fo
O0\[.7.0 0\/.7.0 01.,.0\/.7.6 <
S lwo ]+ D e+ [ aetlwe)o) =1,
b r



The level density is obtained as

P (€) = ——Imf [

Y (l‘)lﬁf*(l‘)

_ o0
e — &b

¥y, (g (x)

E—&p

o]

For the finite basis number N, the level
density is expressed as

Jef Y ()P (r)

8—89

_|_

|

Density [MeV']

15
Energy [MeV]

20 25 30

1 /2
Po (8)_25(8_8b)+ Z(g—E)2+F2/4
N—N,—N, o

C

2.

C

I
™. o
T

(8 — 85)2 + sgz'

» The resonant state corresponds to
the peak appearing in the density of
energy level p (¢).

» When 0 is small, there exists
oscillating phenomenon in p(E).

» With the increasing of 0, the
oscillating disappears. “




The continuum level density is
obtained by subtracting the — 0.6 —0=6° ]
background as > o4l - oo 09
L™ 0=12°
Ap(e) = py'(e) — py" (&) S 02t -
Ne Ny ' (©)]
1 /2 0.0} .
— Z 8(8 - Sb) + _ Z 2 . 1 M 1 M 1 2 1 M 1 M 1 M 1
b Ll G 0 5 10 15 20 25 30
1 VNN e > When the background is removed off,
+; Z 2 . the peak is more clear, which can be
- (e—el) +el used accurately to determine the
| X (01 resonant parameters.

C

T (o) e

N

» The resonant state corresponds to the
peak appearing in the density of
energy level p ().

» The dependence of 0 disappears when
0 is large. ﬂ

<. <

Combined with RMF, the RMF-CGF formalism is established.

25




PHYSICAL REVIEW C 92, 054313 (2015)

Relativistic extension of the complex scaled Green function method

Min Shi, Jian-You Guo,” Quan Liu, Zhong-Ming Niu, and Tai-Hua Heng
School of Physics and Material Science, Anhui University, Hefei 230601, People’s Republic of China
(Received 29 August 20135; revised manuscript received 23 October 2015; published 17 November 2015)

PHYSICAL REVIEW C 94, 024302 (2016)

Probing resonances in deformed nuclei by using the complex-scaled Green’s function method

Xin-Xing Shi, Min Shi, Zhong-Ming Niu, Tai-Hua Heng, and Jian-You Guo
School of Physics and Materials Science, Anhui University, Hefei 230601, People’s Republic of China
(Received 29 May 2016; published 1 August 2016)

Resonance plays a key role in the formation of many physical phenomena. The complex-scaled Green’s
function method provides a powerful tool for exploring resonance. In this paper, we combine this method with
N the theory describing deformed nuclei with the formalism presented. Taking *°S as an example, we elaborate l
numerical details and demonstrate how to determine the resonance parameters. The results are compared with
those obtained by the complex scaling method and the coupled-channel method and satisfactory agreement is
obtained. In particular, the present scheme focuses on the advantages of the complex scaling method and the
Green’s function method and is more suitable for the exploration of resonance.




There exist some shortcomings in CSM

» Need to introduce a unphysical parameter: complex
rotation angle 0.

» CSM is only applicable to the dilation analytic potential.

» There Is a singularity in the mean-field of nucleon
movement when 0 is very large. CSM is not applicable to
very broad resonance in nucleil.

™ Complex momentum representation (CMR) ﬁg



For the Woods-Saxon potential

Vo
V4 S
(r) 1 + exp (r;R)
Complex scaling transformation
V (fr‘ew) = — Yo -
1+ exp (Te%a—R)
re — R . . Ta
a R
V (re”) — singularity
fo’ f < tan ! (%l)

When R=5fm,a=0.6fm, 6 <20.6°



The RMF-CMR formalism

Complex momentum representation (CMR)
Imk Im &

In practical applications, o DR
it is more convenient to “
adopt the momentum ",
representation Bound State g

" \i Continuum | s, " —

> > — A A Re k
Completeness relation in . S ek AN
momentum representation N Resonghte . L
N ) (] + f (k) (u (k)| dk = 1
e ' > In real momentum space, we

can only obtain bound states
and scattering states.
» To obtain resonant states,

N <Gz ‘u1> =0 <U ‘ U> =1 complex momentum
represenation is adopted:

Orthogonality and Normalization
relations




The Dirac equation is transformed into momentum Liu, shi, Guo, etal.,
representation: PRL117, 062502 (2016)

[ R @R E) = e (®

where H = a-p + (M + S) +V
For spherical nuclei
o FOBLm; ()
¥ (%) = ( 500, () )
Dirac equation becomes
Mf(k) — kg(k) + [ K2dk'V, (k, k') f(K') = ef (k),
{ —kf(k) — Mg(k) + f kK2dk'V_(k, k") g(k’) = gg(k).

., Here Vi(k,K') = %Jrrzdr[V(r) +8 (N ji(K'r) ji (kr), *
V_(k,k') = %Jrrzdr[V(r) - S ("] ji(K'r) ji (kr).




For computational convenience, the equations are symmetricized and discretized
as follows

-

N
bZ: [M5abf(kb) — kaOapg(kp) + Vwawbkakbv+ (ka» kp) f(kb)] = &f(k,),

1
N
3 | ~Kabaf (k) = Moasg (ko) + \awikaks V- (ko ko) 8(ks) | = e8(ka).
where { f(ky) = \VWakaf(ka),
g(ky) = \/W_akag(ka)-

This set of equations is continuated to complex momentum space, and its
solutions include bound states, resonant states, and scattering states.

The normalization of wavefunction in complex momentum space

N
Q [o@u@ark = 3 k) + ko)
a=1

Combined with RMF, the RMF-CMR formalism is established.



For deformed nuclel Fang, Shi, Guo, Niu, Liang,
The Dirac spinor is expanded as Zhang, PRC 95, 024311 (2017)

N FI7 0 m, Q) (5
0=, ()= 3 rrigra iy -0 =27 =1
Dirac equation in momentum representation

N ' 7Y . .
1 l/j/

b:
N
2

b=

—kaOapt (kp) — MSapg" (kp) + lZ Wawikaky V(U j'. p,q. 1, j, mjakaakb)gl’jl(kb)] = eg" (ko)
Ijl

where
V+(l’3 jly ps Q3 la js mja ks k,)
. 4 2 . . ’ ’ ! 1 . / ll 4
= (=) M - fﬂdr [V (r)+ S (r)] ji(kr) jr (K'r) Z {Um| Y py (Q)) |l m )(lm§m3|]mj><l m Emslj m;).
i

. V(. ., p.g.l, jomk k)

_ T2 2 _ (ki) o (K Tii Q) [Pt Clins ol jm Wi =gl fm

= (=) - redrV (r) S(r)]]l(kr)]l,(kr)Z<lm|qu( r)|lm>(m2ms|]mj)( S msljn)
g




- . Ding, Shi, Guo, Niu, Liang, PRC
The treatment of pairing correlations 08, 014316 (2018)

In the framework of RMF-CMR, the pairings are dealt with BCS approximation.

When the resonances are taken into account, the gap equation becomes
Qb f ,,(8) 2
—|_ Qr d8 = —
?J(%—A)HAZ Z Ve—nr+ar 6
and the particle number equation

Ep — g — A
Q|1 - Y - =
%:b[ J@,A¥+ZV}+ SZ/EA@{I ¢@—xﬁ+¢v}m? N

where 1 F/Z
m(e—e¢g)+1+/4

The RMF-CMR formalism 8Euge&—4ah g HIRSHIEEIS, 8
RI2EZ, BEENZ: ﬁiﬁ%ﬁz"ﬁﬁ?ﬁﬁﬁ 5954%‘251"4 51%i%.
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Liu, shi, Guo, etal.,
PRL117, 062502 (2016)

» CMR describes the bound
states, resonant states, and
continuum on an equal footing

» The bound states populate on
the imaginary axis in the
complex momentum plane

» The resonant states locate at
the fourth quadrant

» The continuum follows the
contour

» The bound states and resonant _
states are independent on thet
contour.




The calculated
level density p,
that from the
background p,,
the differences
between them
Ap.

Level density [MeV-1]

J13I'2

15 0 5 10 15

Energy [MeV]



‘ TABLE II. Energies and widths of single neutron resonant
0.5 I states for '°Sn in the RMF-CMR calculations in comparison
= | with the RMF-CSM, RMF-RSM, and RMF-ACCC calculations.
S o6 || Data are in units of MeV.
o
o RMF-CMR RMF-CSM RMF-RSM RMF-ACCC
= S/ ‘ \\ nl; E, T E, T E,T E,T
0z | \h | 2fs,  0.678,0.031 0.670,0.020 0.674,0.030 0.6850.023
it liyy,  3.267.0.004 3.2660.004 3.266,0.004 3.262,0.004
0.0 ML LT 1y, 9607,1219 9597,1212 9.559,1.205 9.60,1.11
00 Oa 15 20 Ljis» 12.584,0.993 12.577,0.992 12.564,0.973 12.60,0.90

K/[fm™]
Wavefunction for the resonant state is expanded much wider than the free states

which agrees the Heisenberg uncertainty principle: a less well defined momentum
corresponds to a more well-defined position for bound and resonant states.
PRL 117, 062502 (2016) PHYSICAL REVIEW LETTERS 5 AUGUST 2016

Probing Resonances of the Dirac Equation with Complex Momentum Representation
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'School of Physics and Materials Science, Anhui University, Hefei 230601, People’s Republic of China 5
’RIKEN Nishina Center, Wako 351-0198, Japan
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Explanation on neutron halos

Neutron halo in 3!Ne }osoeels
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There appears the inversion in =~ |24, .33 -
the levels for the resonant states | {saisis tesssesst
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Neutron halo in 1°C

X.N.Cao, Q.Liu, J.Y.Guo, JPG 45,

The single-particle energy levels of 085105 (2018)

neutrons including the resonant

levels in 19C
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Probing resonances in the Dirac equation with quadrupole-deformed potentials
with the complex momentum representation method
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Research on the halo in *'Ne with the complex momentum representation method
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(Received 14 April 2017; published 30 June 2017)

Interpretation of halo in '°C with complex
|/ momentum representation method -

1
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Predication on neutron halos

Neutron halo and giant halo Zr isotopes (T ~ 1t ~ v ~ T = ~ 7]
—— n RMF-CMR
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Occupation probabilities of neutron levels for Ding, Shi, Guo, Niu, and Liang,

the Zr isotopes PRC 98, 014316 (2018)
10 T ' ' ' ' < Density distributions in 124Zr
é 0s L v 4F LA DL LA RN A RN NN B R R ]
E’ 0.6 |-
% 0.4 |-
§ 0.2 -—
O =3
0.0 |- .
120 124 128 132 136 1
Mass number A proton N
- - neutron 3
» The top panel displays the ratio of the total ]
neutron density of the single-particle
levels to the total neutron density. P N
» The bottom panel displays the proton, N W
", neutron, and total matter densities. - 2 |

» Neutron.and matter density distributions in 124Zr with a long tail, i.e;; ’neutron :
halo appears in 24Zr.




Neutron halo Ce isotopes

Cao, Ding, Shi, Liu, Guo,
PRC 102, 044313 (2020)
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The diffuse density
distributions in 185-198Ce
come mainly from the
contribution of the broad
resonant states 3d.,, and

.\\
5 1
r [fm] =

—
~
Q.

10% |
The occupation number in halo orbits is S D T
.more than two nucleons in 192-19%Ce, 10° . ]

which-suggest that 18¢-19Ce are halo

0 2 4 6 8 10 12 14 16 18

i 192-198 I I
nuclei and Ce giant halo nuclei. r [fm]




Deformed neutron halo "°Cr, Cao, Liu, Guo, PRC 99, 014309 (2019);
TTEe. 53AT Wang and Guo, PRC 104, 044315 (2021)
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Deformed neutron halo in 4Mg Luo, Liu, Guo, PRC 108, 024320 (2023)

6F L, ] The occupation probabilities of single
| Mg | particle levels around Fermi surface in
4t 5i2 >4 4Mg. The relatively bound levels are
< 32’ denoted as gray circles. The weakly
S 2r 12" 31y I 1 bound and resonant levels are marked
1/2° = - -
> 2w 0 ° 1 assolid circles.
qCJ 0+ ) 3 4 5 7 Aa - -1t r r - r - 1t T 1T
L 77312 1.0 44 7]
T 2 Mg
A
-2 - " 512 - .g 08 F | -
-4 % 06 | ) 4 % -
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The single-neutron levels around Fermi & 04 ° 52 T
' : ® o 7/2 3
surface including the bound statesand & o 12°(1), o 12'Q) 3
. . 0.2 | R .
resonant states in “Mg. The center line 8 ° 312 ‘o .
bound stat
Nof the bar corresponds to the level Y YO 7 e 3]
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the level width. Energy [MeV]



(a) Total neutron density distributions,
(b) that from the deeply bound levels,
(c) from the weakly bound and resonant

levels.
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The ratios of the density
distributions of single particle
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RMF-CMR for proton

Different from the case of neutron, there is the singularity in the Dirac equation
In momentum representaton for Coulomb field. MBI

Without losing generality, a //: /y]s F r J

screening coulomb potential is

considered-

Vo (7) = AP (=)

P|n

P n AV
p n
r ks v

: o - : FRT Bk BT
Dirac egaution In momentum represenations

{ M f(k) = kg(k) + [ E?dE'VE (kK f(E) = ef(k),
—kf(k) — Mg(k) + [ k=dk'V! (k. k") g(k") = eg(k),

Where
Loy AQUW) i o AQEW) _ RRE
Because Qi(y) = Pi(y)Qo(y) —Wii () Wi ( Zl L)
_ Lyl i1 !
N Qo (y) = B ny—l
Wheny,. 7 — 0 L — y =1

There is the singularity in Q, and Q,,




To eliminate the singularity, Lande subtraction is adopted. The integral in Dirac
equation is separated into the two parts:

/ Ve (k. k') fi(K)k™2dk" = A+ B,
0

where
_ - l / N 1.2 Ji (k) K /
C ) [TVE(kK)
sz(k)/cfo Am dk’.

The integral in A can be set with k# k" because A = 0 with k=K.

The integral in B can be calculated as:

Yk k) A [CQ (y)dk A ym
- _Ldk = — = (=—1
/o Pi (y) wk Jo Py K 7 (5 1)

> o

I, can be evaluated exactly, 1,=0, 1, =1, 1, =1.2247448713915894, ...




Exploration of proton resonant states

' | T T T T T ' | T ) )
0 o P 2gnq) | > Singularity of long-range Coulomb
' o DouncgeRe ' potential is eliminated in the RMF-
10F E ° continuum y CMR calculations.
i » All these results from the five
0.5 - 2 1h " - different methods are comparable.
: 9’2\ P Reklfm w1 > Our calculations match better the
0.00 G scattering phase shift calculations.
-0.05 .
2f7/2 Lhg /o 3p3/2 2152
0.10F E,T E,T E, T E, T
RMF-CMR |[6.210,0.042] 7.133,0.003 | 7.567,1.291 | 7.917,0.294
015} RMF-S  [6.210,0.043| 7.132,0.003 | 7.513,0.924 | 7.934,0.307
RMF-GF  [6.205,0.037| 7.134,0.002 | 7.265,0.965 | 7.909,0.365
020 | , | . [RMF-ACCC|6.220,0.073| 7.130,0.017 | 7.320,0.820 | 7.970,0.300
0.0 0.2 0.4 0.6 0.8 | RMF-CSM |6.207,0.048| 7.135,0.003 | 7.305,0.911 | 7.919,0.282
3p1/2 li13/2 24992 li11/2
l ) A Q1 (y) E,T E,T E, T E,T
Y vV (k, k ) = =~ RMF-CMR |8.166,2.05210.110,0.012|13.510,3.208 | 16.889,0.946
) a RMF-S  |8.085,1.344(10.110,0.012 16.960,0.999
Vi 1) = A Qi (y) RMF-GF |7.667,1.233/10.110,0.014 16.934,1.092
c ( ; ) = LR RMF-ACCC |7.690,1.130
RMF-CSM |7.663,1.222

~N




Comparison of RMF-CMR and RMF for: deﬂsi,t?,f‘

» The RMF-CMR calculation
eliminates the dependence of the

107
— available density distributions on the
E. . box size.
g > The proton density distribution in 26P
3 Is more dispersed than that of neutron,
g 1° i.e., there is a proton halo.
§ 10°® —p, (R=10)

10
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o
N
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o
n
oo
—
N
—
[e)]
N
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—
Q
E-

> The density distributions in the RMF RMF

calculations depend on the box size.
,, ~ With the size of the box, the available

density distributions are more

dispersed, especially for protons. 107

Density distributions [fm™]
3 =)




Proton density distributions [fm™]
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» The proton density distributions is
more diffuse than that of neutron in
26p and there is a proton halo.

» The proton halo is mainly due to the
occupation of the weakly bound
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Exploration of proton halo in the S isotopesgs ’f‘

» The proton halo is mainly due to the
occupation of the weakly bound

10° level 2s,,.

Proton density distributions [fm™]

107
: rrrorrorTr 1 I 1 |
5 10F 270 7N s
10 - 27S (TC) -
08 | _ 13”2 -
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r [fm] D \ s =T 1Py
o - . A\ Y3
< v ¥ SRR U
= 04} U A .
= o VY i - o= 1dg,
] ] . . ] N "'-__ A .' o \ 1
» The proton density distributions is 0.2 - } AN .
,, more diffuse than that of neutron in NN N E
27S, and there is a proton halo. e N




Exploration of proton halo in the Ar isotopes: 4’"‘

» The proton halo is mainly due to the
= occupation of the weakly bound
@ level 1d,.
(@]
2
=
Az
©
=
‘®
é L L L I 1 1 1 I
10F 31 A _ /N e e
[ ' Ar (m)
o A -
08 \ - = 1Isy
R SN e 1p1,2
S 1d
= i \ .® = 3/2 _
‘:’:0.4 \ "/ \ _ -1d5,,2
L o XK \,
» The proton density distributions is 0.2 —,1---.'}:\'.‘\‘ N .
relatively diffuse than that of :L-;’,;‘ Codiy el 16
neutron in 3TAr. The proton halo o N

phenomenon is not very remarkable. 0 2 4 6 8 10 12 14 16 18 20




Exploration of hyperon resonant states in h.y-pew |

T T Y T T T T r 09 F L T NI T T T T | -
30 b = Exp | Im//[fm ] o  bound
I Pi La | 0.6 L < resonant ]
Tty e Cal 6 5 o continuum
24+ . .
Pey Va g 03 .
= 18F g, - e | It
% d ! 'y e 0.0 ] 2p,, Rek[fm ]
: | .0 - ‘
S PO N 0 c
L 12pfe . .- o1
cL88 - £ i
L e 0.2
0 L ! ? ; = a 1 ] 1 L 1
1 . (a) Eb ]_.91/2 ]_pg/g ]_pl/g 1d5/2 1d3/2 281/2 P

0.04 0.08 0.12 0.16 RMF-CMR[-20.7046 -13.4502 -13.2939 -6.1475 -5.9392 -5.0391

-2/3
A . RMFEF-GE [-20.6035 -13.3109 -13.1363 -6.0358 -5.7893 -5.0977
» The results for bound states are in

> The results fo resonant satesare |0 | e e e Ui m ine

RMEF-CMR/| 0.0835 0.1006 0.5539 0.7148 6.0948 6.2005

. Comparqble to those from RMF-GF RMF-GF | 0.0774 0.1050 0.6147 0.8215 6.8017 6.9772
calculations [1]. o

[1] S.H.Ren, T.T. Sun, and W. Zhang, PRC " ['py\p_cMR| 0.0617  0.0860  0.0076 00193 2.5220 2.7315

>0 (2017) RMF-GFEF | 0.1015 0.1259 0.0124 0.0229 3.2003 3.2926

: . : : : =




Single proton emisson

2.8647 [ o T
» The calculated energy and Leess [ 7SC E -
width as a function of the : ]
imaginary part of the vertex of %[ e e o0 e o e o0 oeoeoeoes
the triangular contour -ki. 2.8644 - ]
> The upper (lower) panel 28643 |- -
represents the energy (Width) 2.8642 -: A : H———— _
of the 1f, , resonant state in & r -
37Sc. 5x10° _—\ .
Sc = FCatp !
Method Q F( ) P00 90 0 90 0 0 0 0 0 0 00— d
CMR 2.864 3.75 x 1077 (1.75 x 10~ ) il
TD-Dirac 2.864 3.74 x 1072 (1.76 x 10~ 1'?)
CSM 2.863 3.82x 1072 (1.72 x 10719 F—————— PR
SM 2.863 3.62 x 1073 (1 82 x 10719) -k, [fm"]
experiment 2.9(3) > The Q value and
>"Sc = *Ca+tp decaying width of 1p
\ Method Q I'(7) emission evaluated
CMR 0.664 3.88 x 107 7(1.69 x 10~ ) in the 1f,,, channel
TD-Dirac 0.662 3.87 x 1072(1.70 x 10™'%) in comparison with
experiment 0.597(24) (7 < 400 ns) the other methods.




€ Calculation on scattering section
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n-a scattering
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+ CMR is used to study the elastic
scattering of n=a system, the
continuum level density, phase
shift, and cross section are
obtained.

+ The calculated results are in fc
agreement with the experimental |
data.
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0% Summa'ry®7~

€ Significance of open quantum systems such as the nuclei far
from the stability line is sketched. Some methods describing
open quantum systems and their shortcomings are
Introduced.

€ Formalism of RMF-CSM, RMF-CGF, and RMF-CMR are
presented.

€ Some applications on neutron, proton halos, and deformation

halos discovered experimentally have been explained. Some
possible exotic phenomena are predicted.
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Halo in hypernuclei Chart of Hypernuclides
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